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The almost-highest wave: a simple approximation 
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The crest of a steep, symmetric gravity wave is shown to be closely approximated by 
the expression 

where x, y are co-ordinates in the vertical plane, x is the complex velocity potential 
and a, /3, y are certain constants. This expression is asymptotically correct both for 
small and for large values of 1x1 ; and the free surface agrees with the exact profile 
calculated by Longuet-Higgins & Fox (1977) everywhere to within 1.5 per cent. The 
pressure at  the surface is constant to within 5 per cent. 

1. Introduction 
In two recent papers (Longuet-Higgins & Fox 1977, 1978)t the asymptotic form 

of a steep, symmetric gravity wave near the wave crest was calculated precisely, and 
it was shown how to match the local flow analytically to the velocity field in the rest of 
the wave. The inner solution representing the motion near the crest was shown to be a 
self-similar flow, given by a series with coefficients which were calculated numerically. 

This solution greatly simplified the calculation of the properties of steep gravity 
waves. But for some purposes it is convenient to have an even simpler approximation 
in which the inner flow itself is given by only a single term. It is the purpose of this 
note to find such an approximation. In  fact we shall obtain an expression which re- 
produces the main features of the exact inner solution, and agrees with it to within 
a few percent over the entire range of application. 

In papers to follow, this approximation will be used in the calculation of the orbits of 
the fluid particles near the crest of a steep wave, and in astudy of the dynamical stability 
of such waves. But because of its own interest the derivation is given here separately. 

2. The exact solution 
As in paper I, consider a wave progressing horizontally to the left. Then in a reference 

frame moving with the phase-speed the motion appears as a steady flow to the right 
(see I, figure 2 ) .  We take axes with x directed vertically downwards and y horizontally 
to the right and set 

(2.1) 1 z = x+iy = reie, 

x = $+i$, 
w = u+iv = ( d ~ / d Z ) * ,  and 

t The first of thew will be referred to ae paper I. 
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where q5 and l/r are the velocity potential and the stream function and u, v denote the 
components of velocity in the x and y directions. A star denotes the conjugate complex 
quantity. 

We choose units of length and time so that 

g = 1, q 2  = 2, (2.2) 

where g denotes gravity and q denotes the particle speed a t  the wave crest. 

the free surface must be constant; hence 
The conditions to be satisfied by the inner solution are, first, that the pressure a t  

(dX /dz )  (dX/dz)* = 2gx when l/r = 0. (2.3) 

(2.4) 

(2.5) 

2 = ( 6 + i X ) q b o + b l o + b , W 2 +  ...), (2.6) 

Second, that the free surface pass through the point z = I and be symmetric about 
the line y = 0, hence x =  0 when z =  1.  

Third, for large values of IzJ the solution must tend asymptotically to the Stokes 
corner-flow : ix N #z+ as 1.1 +m. 

In  Q 6 of I, the inner solution was expressed as an infinite series: 

where 

and p, 6 and b,, b,, b,, . . . are real constants. It might seem natural, therefore, to appro- 
ximate this solution by truncating the series after a finite number of terms. Retaining 
for example only the first two terms of the series we should have 

say. This expression is further simplified if, as in the numerical calculations, we take 
S = P. However, an examination of the numerical values of the coefficients b,, given 
in table 2 of I, shows that 

not unity, as required by (2.4). The reason for this large discrepancy is to be found 
in the slow rate of convergence of the series in (2.6) when o = 1.  

Nevertheless it will be seen that the form of (2.8) is asymptotically correct both 
when 1x1 < 1 and when 1x1 $ 1, provided only that the constants in the expression 
are suitably chosen. 

~ ~ ( 0 )  = SQ(bo + b,) = 2.596 (2.9) 

3. A simple approximation 
We will therefore ignore the numerical values found in I and try instead 

a+ yix z=- 
(P + W+’ 

where a, p and y are to be determined so as to satisfy the conditions of 4 2, as far as 
possible. (a will not be confused with the quantity S/p of paper I.) 
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To satisfy the condition (2.4) at x = 0 we must clearly have 

a = p+. ( 3 4  

(3.3) 

Next, as 1x1 + 00 we have z N y ( i ~ ) P ,  so that to satisfy the condition (2.5) we must 
have 

y = (6)' = 1.3104. 

Thirdly, since 

it follows that in order to satisfy (2.2) we must have 

Y 1 1  p-qj = 3. 

(3.4) 

(3.5) 

Since y is already determined, equation (3.5) may be regarded as a cubic equation to 
determine p. In  fact writing /3 = we have 

h3-3yA + 3~ 2 4  = 0, 
which has roots 

The corresponding values of ,8 are 
1 

3x2)  
p --- - 0.2357, 

29 
2 - - = 4.8065, 
- 3f- 15 

and 
- 29 

3 - ~ = - 0.0925. 
- 3f-t 15 

Thus altogether we obtain 
1 +€iX 

(1 +/3-'ix)+' 
z =  

where € = ($)'PA 
and /3 takes one of the values (3.8). 

(3.9) 

(3.10) 

4. Curvature of the wave crest 
To see which of the values of /3 is the most suitable, consider the curvature of the 

profile of the free surface at the crest itself (x = 0). Generally, when $ = 0 and 141 < 1 
we have from (3.9) 

where 

. ,  
1 +€i$ 

(1 + p-'i$h)* 
x+iy  = = l+Ai#+BqP+ ..., 

1 € 2  A = € - -  and B = - - -  
3P 3p 9 p *  

The radius of curvature R a t  $ = 0 is given by 
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Corresponding to the three values of P in (3.8) we find respectively 

and 

R,= - a  

R, = - ( 1 8 ~  3)+31)-, = -0.016. 
R, = (18 x 3*-31)-’ = (4.4) 

If the crest is to be convex, then R must be positive, so we choose R = R,, ,8 = P2. 
The precise value of R determined in I was R = 5.15. 

5. Behaviour at infinity 
When 1x1 is large, we have from (3.9) 

where C = c’-+P = -0.314. (5.3) 

Since C is negative, it  follows that the profile approaches its asymptotes (0 = 5 in) 
from the outside, just as does the exact solution (see I, figure 9), though the latter has a 
damped oscillation a t  infinity. In (5.2), the angular departure A0 of the free surface 
from its asymptote is given by 

A0 (24-1 N iCr-3 = -0 .47~-% (5.4) 

compared with the expression 

A0 N 0.7 8r-% cos (&A In r - v) (5.5) 

derived from equation (7.4) of I. We shall see that the difference between these two 
expressions is in practice small. Although (5.4) is monotonic and (5.5) is oscillatory, 
both quantities are negligible by the time that the asymptote is crossed a second time, 
namely at  r = 68.5 (see I, figure 9).  

6. The complete profile 
The entire profile of the surface is given by 

where a = 1.6876, P = 4.8065 and y = 1.3104. Thus x and y are given as functions 
of the parameter $. The result is shown in figure 1. It can be seen that the approximate 
expression (6.1) agrees with the exact profile remarkably well. The profiles each cross 
the asymptote at  almost the same point, r = 3.32. Out as far as r = 45 the maximum 
difference between the profiles y(x) is less than 0.02 or about 1.5 per cent. For large 
values of r the angular difference in 0(r )  for the two profiles is always less than 0.01, 
or about half a degree. 

It is interesting to test the constancy of the pressure at the free surface by con- 
sidering the ratio of the terms on the two sides of equation (2.3). At the crest $ = 0 
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FIGURE 1. A comparison of the simple apprdximation (6.1) with the surface profile calculated 
accurately by Longuet-Higgins & Fox (1977). The broken line shows the asymptote, which is 
the sanie for both curves. x , exact profile; 0, approximation (6.1). 

and in the limit q5 -+ co the ratio equals 1 by arrangement. Over the rest of the profile, 
a calculation shows that the ratio never differs from 1 by more than 5 per cent, the 
maximum being 1.0498 when y = 2.72. The ratio equals 1 again at  y + 7.07 and 
thereafter never departs from 1 by more than 1 per cent. The pressure condition is 
therefore well satisfied. 

7. Conclusions 
The simple expression (6.1) gives a very good approximation to the asymptotic 

form of the almost-highest wave. This has been achieved by choosing the constants 
tl., 8, y to fit the profile at  the two ends of the range, that is a t  q5 = 0 and 00, rather than 
at one end only. The approximation may be useful in calculating approximately the 
fluid velocities and particle orbits in a steep, symmetric wave, and in other problems. 
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